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Abstract

Gestalt principles, established in the 1920s, describe how humans perceive individual ele-
ments as cohesive wholes. These principles, including proximity, similarity, closure, con-
tinuity, and symmetry, play a fundamental role in human perception, enabling structured
visual interpretation. Despite their significance, existing AI benchmarks fail to assess mod-
els’ ability to infer patterns at the group level, where multiple objects following the same
Gestalt principle are considered as a group using these principles. To address this gap, we
introduce Gestalt Vision, a diagnostic framework designed to evaluate AI models’ ability
to not only identify groups within patterns but also reason about the underlying logical
rules governing these patterns. Gestalt Vision provides structured visual tasks and base-
line evaluations spanning neural, symbolic, and neural-symbolic approaches, uncovering key
limitations in current models’ ability to perform human-like visual cognition. Our findings
emphasize the necessity of incorporating richer perceptual mechanisms into AI reasoning
frameworks. By bridging the gap between human perception and computational models,
Gestalt Vision offers a crucial step toward developing AI systems with improved perceptual
organization and visual reasoning capabilities.

1. Introduction

Gestalt principles—such as proximity, similarity, closure, and continuity—describe the in-
nate ways in which human perception organizes visual information into coherent wholes
(Wertheimer, 1938; Koffka, 1935; Ellis, 1999; Palmer, 1999). These principles allow hu-
mans to instinctively identify salient features and abstract high-level concepts from complex
scenes. For example, we instinctively perceive symmetrical arrangements as unified struc-
tures and tend to complete incomplete shapes through closure, enabling rapid recognition
of objects and their interrelationships (see Fig. 1). This perceptual strategy is particularly
relevant in complex visual reasoning tasks, where it is important to move beyond the fo-
cus on individual pixels or discrete objects to discern overarching patterns and structures.
Incorporating Gestalt principles enables neuro-symbolic models to better emulate human
perception, improving object relationships and high-level reasoning.

Neuro-symbolic systems often combine deep learning models like Mask R-CNN (He
et al., 2017) or Slot Attention (Locatello et al., 2020) to detect objects and assign symbolic
labels and bounding boxes. These symbolic abstractions form the input to reasoning mod-
ules that operate over object-level representations. However, this pipeline tends to overlook
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Figure 1: Gestalt Cognitive Reasoning. Left: Humans perceive structured patterns
through Gestalt principles like closure and symmetry (Koffka, 1935). Right: The
stages of human perceptual reasoning following Gestalt principles. The process
begins with Raw Visual Input.Through Perceptual Grouping, Gestalt principles
organize the perception into meaningful structures. This leads to Cognitive Rea-
soning, where humans interpret these organized patterns. Finally, the Decision
Output represents the inferred conclusions drawn from the visual data.

crucial low-level attributes—such as contours, size, color, and shading—that are essential
for context-sensitive inference. As a result, reasoning models may miss the nuanced in-
formation needed for complex relational or group-level understanding. To overcome this,
neuro-symbolic systems must adopt more robust perception mechanisms that preserve both
local and global visual features.

To bridge this gap, we introduce the Gesalt Vision (ELVIS), a synthetic benchmark
designed to evaluate models’ ability to perceive and reason over Gestalt-based groupings
and visual rules. Each task in ELVIS is constructed that emphasizes a specific Gestalt
principle, with structured visual scenes and rule-based labels. Unlike conventional visual
benchmarks, ELVIS focuses on both group-level regularities and isolated object features.

Overall, we make the following contributions:

1. We introduce Gestalt Vision (ELVIS)1, a new benchmark dataset, covering a broad
range of gestalt principles in synthetic scenes.

2. We formalize tasks explicitly constructed to test neuro-symbolic models’ reasoning
abilities across shape, size, color, and spatial configurations.

3. We evaluate and analyze multiple baseline models, highlighting both the strengths
and challenges of existing neuro-symbolic approaches in capturing nuanced perceptual
grouping phenomena.

To this end, we proceed as follows. We start off with reviewing related work. Afterwards,
we introduce Gesalt Vision (ELVIS). Before concluding, we will present the results of our
evaluation using EVLIS.

1. https://github.com/ml-research/ELVIS
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2. Related Work

We will now review the relevant literature focusing on two major subareas, namely visual
perception and neuro-symbolic reasoning.

2.1. Gestalt Principles and Computer Vision

Gestalt principles have a long and rich history in psychology, tracing back to seminal works
by Wertheimer, Koffka, and Palmer (Wertheimer, 1938; Koffka, 1935; Palmer, 1999; Ellis,
1999). In recent decades, these foundational ideas have influenced a variety of computational
models in machine learning and computer vision (Lörincz et al., 2017; Hua and Kunda, 2020;
Kim et al., 2021; Zhang et al., 2024), often aiming to replicate or approximate the human
capacity for grouping and structural organization. Despite these efforts, most research has
emphasized convolutional neural networks or other purely neural approaches, leaving a gap
in methods that explicitly combine neural perception with symbol-based mechanisms to
capture the holistic grouping functions emblematic of Gestalt reasoning.

2.2. Neuro-symbolic Learning and Reasoning

Neuro-symbolic approaches have emerged as a prominent paradigm combining neural net-
works’ powerful perception capabilities with symbolic reasoning’s interpretability and ro-
bustness. A variety of benchmarks have been developed to assess such hybrid systems,
notably CLEVR (Johnson et al., 2017), CLEVRER (Yi et al., 2020), and VQA frame-
works leveraging ConceptNet and other knowledge graphs (Yi et al., 2018; Mao et al., 2019;
Amizadeh et al., 2020; Tan and Bansal, 2019). Despite their advancements, existing bench-
marks predominantly focus on lower-level perceptual or question-answering tasks, often
limiting their scope to identifying object properties or simple relational reasoning.

Recently, benchmarks exploring more complex relational and abstract reasoning have
emerged. Abstract Visual Reasoning (AVR) tasks investigate the generalization of learned
concepts to abstract scenarios, challenging models with tasks involving higher-level rea-
soning and compositional generalization (Hu et al., 2021). For instance, the CLEVR and
CLEVRER benchmarks explicitly address reasoning about object interactions and physics-
based causal relationships (Yi et al., 2020). Similarly, the Kandinsky Patterns (Müller and
Holzinger, 2021) and its extension to 3D scenes (Sha et al., 2024) test model performance on
synthetic, structured visual data, highlighting difficulties in understanding abstract relations
and grouping concepts. Furthermore, the recent Alphabet-Shape Dataset (Sha et al., 2024),
which involves recognizing alphanumeric shapes composed of grouped objects, exemplifies
pioneering work explicitly focusing on grouping as a fundamental cognitive principle.

Our work extends these efforts by explicitly incorporating Gestalt principles, thereby
significantly deepening the complexity of relational reasoning tasks. By addressing visual
grouping phenomena—such as proximity, similarity, etc.—the proposed Gestalt Reasoning
Benchmark, ELVIS, rigorously evaluates the capabilities of neuro-symbolic models in inter-
preting abstract visual patterns. This approach not only enhances the evaluation of symbolic
inference but also aligns closely with human perceptual cognition, creating opportunities
for future benchmarks and frameworks that better emulate human visual understanding.
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Figure 2: Gestalt Principles Supported by ELVIS. From left to right: Proximity:
Objects that are spatially close to each other are perceived as a group. Sim-
ilarity: Objects with common attributes, such as shape or color, are grouped
together. Continuity: Objects with continue positions are grouped together.
Feature Closure: Objects with aligned visual features create an implicit, com-
plete shape. Position Closure: Objects arranged in a manner that suggests a
closed contour are grouped. Symmetry: Objects mirrored across an axis are
perceived as a structure, each side determines a group.

3. Gesalt Vision (ELVIS): A Gestalt Reasoning Benchmark

Gesalt Vision (ELVIS) is a curated collection of synthetic visual scenes that emphasize
five key Gestalt principles: Proximity, Similarity, Closure, Continuity, and Symmetry, as
illustrated in Fig. 2. These principles are essential for understanding how discrete visual
elements are perceived as cohesive patterns—an important challenge for neuro-symbolic
models that integrate learned perceptual features with logical reasoning mechanisms.

3.1. Overview of ELVIS

Each task in ELVIS illustrates at least one Gestalt principle by showcasing how objects
can be grouped into meaningful units. Rather than merely detecting individual shapes or
colors, the benchmark encourages models to identify higher-level relational properties. This
approach captures a core facet of visual cognition: elements that share certain features (e.g.,
proximity, shape similarity, or symmetrical arrangement) tend to be perceived as a unified
whole.

By testing the model’s ability to detect and interpret these groupings, ELVIS goes
beyond basic object recognition. It calls for structured reasoning about the relational or-
ganization of objects within a scene—a vital aspect of human-like perception and logical
inference. By mimicking human perceptual processing, which tends to generalize well from
limited information, machine learning models can learn more robust representations of data.
This is especially helpful when training data is scarce, as it allows the model to extrapolate
patterns based on high-level Gestalt principles.

3.2. Data Generation

ELVIS benchmark is generated under controlled conditions to systematically showcase each
Gestalt principle.
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Figure 3: Geometric Feature Scenarios. Example patterns illustrating different geo-
metric feature scenarios. From left to right: individual objects, object overlap,
group overlap, nested shapes, and incomplete forms, designed to assess model
perception under varied spatial configurations.

Diverse Objects. Scenes include shapes such as triangles, squares, and circles, varying
in color up to 150 variations and spanning a size range of approximately 2% to 80% of the
image width. Having diverse objects in the benchmark can make the models more robust
and generalizable while also reducing bias and overfitting.

Varied Complexity. Object counts range from just a few in simpler scenes to several
hundred in more challenging ones. Regardless of quantity, each scene clearly embodies
a target Gestalt principle (e.g., objects arranged to highlight proximity-based clustering).
For objects that follow the same Gestalt principle, they can differ widely in shapes, colors,
and sizes, which ensures the difficulty arises not only from quantity but also from the
heterogeneous attributes of the objects.

Explicit Groupings. Objects are deliberately positioned to leave no ambiguity about the
intended grouping cues. This consistency enables more reliable model comparisons by con-
trolling for extraneous factors. Through these design choices, ELVIS aims to push computa-
tional models toward context-sensitive reasoning. Instead of limiting models to feature-level
classification, they must apply logical rules to recognized shapes, colors, and sizes to de-
termine how individual elements come together into coherent, interpretable wholes. These
capabilities are essential for neuro-symbolic systems striving to bridge the gap between
pixel-level perception and symbolic-level reasoning.

3.3. Features in the patterns

Although the patterns are composed of basic geometric shapes (i.e., triangle, square, and
circle), their variations extend beyond simple shape detection. Fig. 3 illustrates five distinct
scenarios designed to challenge the robustness of perception models: Individual, the ob-
jects are placed individually without overlapping, which is the most straightforward case;
Object Overlap, the objects are overlapped with each other, which can cover part of
the features of some of the objects in the image; Group Overlap, multiple groups are
overlapped with each other, whereas the objects are still remaining individual. Inside, the
objects are completely inside another object; and Incomplete, the object is not completely
drawn in the image, which sometimes shows the features of other shapes.
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Figure 4: Category Base Patterns of ELVIS. Each category in ELVIS is based on a
specific Gestalt principle. The base pattern of each category serves as a foun-
dational structure, which can generate numerous variations by adjusting object
properties.

These variations test the model’s ability to handle occlusion, containment, and missing
features, ensuring a deeper understanding of geometric properties.

3.4. Category

Although we provide hundreds of tasks for each Gestalt principle, we do not treat them
as entirely separate scenarios. Instead, we introduce a base pattern called a category to
efficiently generate multiple tasks. Each category is explicitly designed around a specific
Gestalt principle. By modifying key attributes, such as the number of groups, the number of
objects within each group, and the color, shape, or size of each object, we can create numer-
ous variations while maintaining the same underlying principle. Fig. 4 presents examples
of each category used in the ELVIS.

3.5. Task Formulation

Each task in ELVIS is defined by a set of rules, which specifies a combination of logical con-
ditions that determine the structure of valid visual patterns. These rules are instantiated as
constraints on object-level properties (e.g., shape, color, size) and group-level configurations
(e.g., spatial arrangement, symmetry). For example, a rule might require that each group
contains one red triangle, or several objects form a symmetrical structure.

Using these rules, the dataset generation pipeline creates a set of positive images that
fully satisfy all constraints and a corresponding set of negative images, each of which violates
at least one constraint. Each image is assigned a binary label: 1 for a positive sample and
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Figure 5: Task Example of ELVIS. Left: positive patterns following the Gestalt prin-
ciple of closure, forming a yellow-green triangle. Right: negative patterns that
partially follow the rules but violate key logic constraints.

0 for a negative one. A task is defined as the classification problem of distinguishing these
two types of images based on their compliance with the underlying rules.

In this setting, the rules capture the complete logical structure of the visual pattern,
the constraints represent the atomic predicates that compose the rules, the label indicates
whether an image satisfies all constraints, and the task refers to the binary classification
challenge associated with rules. Although some negative images may share superficial sim-
ilarities with positive ones, they are guaranteed to break at least one essential constraint,
making the task nontrivial and requiring more than low-level visual matching.

This formulation allows models to be evaluated in a focused and interpretable manner,
testing their ability to infer meaningful group-level properties from structured visual input.
While ELVIS is primarily constructed for binary classification over paired image sets, it
is flexible enough to support other task types, such as single-image classification, Gestalt
principle prediction, and pattern completion. A discussion of these alternative task modes
and their potential applications is provided in Appendix A.

4. Empirical Evaluation using ELVIS

We now evaluate the ELVIS benchmark with some state-of-the-art neural and neuro-symbolic
methods to demonstrate the shortcoming(s) of current machine learning models.

4.1. Task Types and Evaluation Metrics

ELVIS comprises a diverse set of tasks designed to evaluate how effectively computational
models can identify and reason about Gestalt principles. Tab. 1 summarizes the task dis-
tribution. Each principle is associated with hundreds of tasks that feature considerable
variation in visual complexity, such as object count (ranging from a few to several hundred),
color diversity (hundreds of different colors), object shapes (limited to three for controlled
variability), and object sizes (varying between 2% and 80% of the width of the image).
These variations ensure that the benchmark tests a wide array of perceptual scenarios.

Models were trained and evaluated independently for each task. Specifically, for a given
task, a model was trained on its corresponding labeled examples and evaluated on its own
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Table 1: Benchmark tasks summarization The table summarizes the benchmark tasks
for each Gestalt principle. Columns from left to right indicate principles, category
number, task number, object number, group number, color number, shape number,
and the object size range.

Principle # Cat. # Task # Obj. # G. # Color # Shape Size Range

Proximity 5 234 4-64 2-4 150 3 5% ∼ 80%
Similarity 3 183 4-162 1-4 150 3 2% ∼ 10%
Closure 6 171 3-60 1-4 150 3 3% ∼ 12%
Continuity 2 225 6-45 2-3 150 3 3% ∼ 8%
Symmetry 5 120 5-25 1-4 150 3 5% ∼ 40%

Table 2: Large Models Comparison Two large models were used for benchmark evalu-
ation. The ViT refers ViT-B/16 model, which is a vision transformer pretrained
on ImageNet-1K, while LlaVA refers LLaVA-OneVision-Qwen2-7B-SI, which is a
multi-modal model incorporating text-image understanding.

Model Pretrain. D. Img. R. Params(M) FLOPs(B)

ViT ImageNet-1K 224× 224 86 17.6
LlaVA Multi-modal 224× 224 7000 1200+
NEUMANN N/A 224× 224 ≈ 0 ≈ 0

held-out test set. This process was repeated separately for every task in the benchmark.
For each task, we report performance using both accuracy and F1 score. The latter pro-
vides a more balanced view by accounting for precision and recall. The final benchmark
performance is then computed as the mean and standard deviation of these metrics across
all tasks.

4.2. Baseline Models

We evaluated three representative baselines, encompassing neural and neuro-symbolic ap-
proaches. Tab. 2 summarizes the characteristics of the baseline models.

Vision Transformer (ViT-B/16) (Wu et al., 2020; Wightman, 2019) is a purely neu-
ral model pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K, providing strong
visual perception capabilities at a resolution of 224× 224 pixels. It is a transformer-based
vision model that represents an image as a sequence of patch tokens rather than using con-
volutional features. Each image is split into 16×16 patches which are embedded into vector
tokens. NEUMANN (Shindo et al., 2024) is a neuro-symbolic hybrid model that inte-
grates learned neural perception with symbolic logic-based reasoning. It introduces a form
of differentiable logic programming to tackle abstract visual reasoning problems that go be-
yond straightforward perception. More details of the baseline are in Appendix C. LLaVA-
OneVision (Li et al., 2024), an advanced multimodal Large Language Model (LLM) that
extends text-based language modeling to incorporate visual inputs. Built upon the Qwen2
LLM as its language backbone, LLaVA-OneVision is fine-tuned on extensive multimodal
instruction data—for example, image-question-answer pairs and vision-language dialogues.
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Table 3: Performance Comparison. The table presents the average score and standard
deviation across four metrics: accuracy, F1 score, precision, and recall. ViT = ViT-
B/16 model, Llava = LlaVA-OneVision-Qwen2-7B-SI, and NM = NEUMANN.

Met. Model Proximity Similarity Closure Symmetry Continuity

Acc.

ViT/3 0.52± 0.22 0.52± 0.22 0.54± 0.18 0.50± 0.14 0.57± 0.17
ViT/100 0.50± 0.04 0.60± 0.15 0.60± 0.11 0.50± 0.04 0.68± 0.17
Llava/3 0.50± 0.11 0.50± 0.09 0.62± 0.16 0.63± 0.19 0.54± 0.12
NM/3 0.53± 0.16 0.51± 0.08 0.57± 0.15 0.49± 0.09 0.53± 0.13

F1

ViT/3 0.40± 0.35 0.37± 0.35 0.48± 0.31 0.41± 0.28 0.52± 0.30
ViT/100 0.00± 0.02 0.51± 0.32 0.57± 0.23 0.02± 0.02 0.65± 0.24
Llava/3 0.40± 0.14 0.36± 0.10 0.53± 0.22 0.58± 0.22 0.44± 0.16
NM/3 0.20± 0.30 0.20± 0.25 0.42± 0.31 0.15± 0.22 0.25± 0.28

Pre.

ViT/3 0.35± 0.33 0.31± 0.33 0.46± 0.31 0.41± 0.31 0.48± 0.31
ViT/100 0.00± 0.04 0.49± 0.31 0.57± 0.22 0.01± 0.08 0.69± 0.21
Llava/3 0.26± 0.35 0.22± 0.28 0.49± 0.29 0.63± 0.30 0.32± 0.41
NM/3 0.30± 0.41 0.21± 0.36 0.45± 0.34 0.32± 0.39 0.34± 0.39

Rec.

ViT/3 0.54± 0.47 0.52± 0.48 0.59± 0.41 0.49± 0.38 0.62± 0.40
ViT/100 0.01± 0.07 0.61± 0.41 0.66± 0.32 0.03± 0.16 0.69± 0.29
Llava/3 0.26± 0.36 0.35± 0.46 0.73± 0.40 0.71± 0.35 0.23± 0.32
NM/3 0.18± 0.30 0.14± 0.23 0.42± 0.35 0.16± 0.22 0.21± 0.26

4.3. Quantitative Evaluation

Tab. 3 and Fig. 6 summarize the the performance comparisons of the three baseline mod-
els across five Gestalt principles. Overall, the mean accuracy typically hovers near 50%,
indicating that these tasks pose a significant challenge even for state-of-the-art neural and
neuro-symbolic systems. F1 scores reveal a pattern of relatively higher recall than precision
across all methods, suggesting a bias toward over-identifying positives.

A notable trend is that increasing the training set size (ViT-B/100 vs. ViT-B/3) often
improves F1 scores on select categories such as palette and x splines, highlighting the
importance of substantial visual supervision for robust feature extraction. Nonetheless, the
gains are inconsistent: despite observing improvements on continuity and closure, no clear
advantage emerges for principles like proximity or symmetry. This discrepancy points to
the possibility that certain visual cues (e.g. spacing or symmetrical structures) may be
more elusive for a purely neural encoder, even with additional data.

LLaVA, in contrast, often achieves competitive or superior results despite limited train-
ing data, underscoring the effectiveness of its multimodal instruction tuning for few-shot
learning. Its strengths on closure and symmetry exemplify how a large language model
backbone, guided by suitable multimodal alignments, can compensate for small class-specific
datasets. Meanwhile, NEUMANN’s overall weaker performance highlights a common neuro-
symbolic bottleneck: while symbolic inference offers powerful reasoning capabilities, imper-
fect perceptual grounding can derail the entire pipeline. These findings collectively under-
score the interplay between data sufficiency, perceptual modeling, and high-level reasoning,
which remains a core challenge in neuro-symbolic learning.
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Figure 6: Average F1 score by Categories Over baseline models. The chart com-
pares average F1 scores (y-axis) for proximity, similarity, closure, symmetry, con-
tinuity, and related categories (x-axis). Larger training sets (ViT/100) help on
some categories (e.g., palette, x splines), yet LLaVA remains competitive with
limited data, while NEUMANN underscores the perceptual bottleneck in neuro-
symbolic reasoning.

4.4. Limitations and Insights

ELVIS inherently contains biases from synthetic image generation, potentially limiting gen-
eralizability to real-world scenarios. Additionally, simplified object shapes and discrete
principle-based patterns, while facilitating controlled experimentation, might not fully cap-
ture the complexity of natural visual cognition. Models exhibiting high variance in perfor-
mance across different Gestalt principles suggest opportunities for further optimization and
deeper integration of symbolic reasoning with advanced perceptual models.

5. Conclusion and Future Work

We introduced the Gestalt Vision (ELVIS) benchmark, a benchmark specifically tailored
to evaluate neuro-symbolic systems on five core Gestalt principles: Proximity, Similarity,
Closure, Continuity, and Symmetry. By designing visual tasks that focus on relational
properties, ELVIS challenges models to move beyond basic object detection and engage in
higher-level logical reasoning. The methodology of ELVIS involves generating tasks from
base categories, ensuring scalability and systematic variation in object count, shape, color,
and size. Through comparative evaluations of multiple baseline approaches, we observed
that overall performance often hovers around chance level, reflecting the nuanced nature
of these tasks. While neural models benefit from larger datasets, neuro-symbolic methods
underscore the importance of integrating perceptual accuracy with logical inference.

Future research could enhance synthetic scene realism to bridge the gap to natural
images. Improving neuro-symbolic frameworks for better precision-recall balance may also
boost generalization. Ultimately, ELVIS aims to be both a diagnostic tool and a catalyst
for advancing perceptual reasoning systems.
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Appendix A. Alternative Task Modes

Although ELVIS primarily supports binary classification over grouped image sets (positive
vs. negative), its design allows alternative usage modes:

• Single-image prediction: For each task, a classifier may be trained to label individual
images as satisfying the unknown rule (positive) or not.

• Self-supervised pattern completion: Some categories (e.g., closure or symmetry) can
support tasks where part of the scene is missing and must be inferred.
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• Principle inference: Given a scene, predict which Gestalt principle it expresses (e.g.,
proximity, closure). While not yet benchmarked, ELVIS supports this via task meta-
data.

These extensions are intended to be supported in future releases. A task loader and
dataset API in the style of CLEVR’s SceneGraph API is also under development.

Appendix B. Task Examples

For each Gestalt principle in ELVIS, we present one or two representative task categories to
illustrate the underlying design. The category names serve as intuitive references, but they
do not always reflect the full range of variations. Due to controlled perturbations, some
task variants may differ significantly from their original category name.

For instance, the category Red Triangle is initially designed around the idea that each
group contains one red triangle. However, certain variations derived from this category
may disregard color in the rule, resulting in tasks where the correct answer is determined
solely by the presence of a triangle—regardless of its color. These variants are still formally
associated with the Red Triangle category, though their governing logic differs. Other
categories follow the same behavior.

B.1. Proximity: Red Triangle

The pattern Red Triangle follows the Gestalt principle of proximity. The base pattern
is structured with multiple object groups, where each group consists of at least one red
triangle and several smaller ones placed closely together.

Fig. 7 presents a task where the rule is defined by color and shape. In the positive
pattern, each group contains at least one object with red color and triangle shape, with the
rest being random properties.

Fig. 8 illustrates another task variation, incorporating color only. In the positive pat-
tern, each group contains at least one red object; the shape of the red object is randomly
determined.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 7: Red Triangle: Considering shape, and color into the logic rules.
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(a) Positive (b) Positive (c) Negative (d) Negative

Figure 8: Red Triangle: Considering color into the logic rules.

B.2. Proximity: Big Small

The pattern Big Small follows the Gestalt principle of proximity. The base pattern is
structured with multiple object groups, where each group consists of one large object and
several smaller ones placed closely together.

Fig. 9 presents a task where the rule is defined by count and size. In the positive
pattern, each group contains exactly one large object, with the rest being small, and there
are precisely three groups.

Fig. 10 illustrates another task variation, incorporating color and size. In the positive
pattern, each group follows the same size structure, but object colors are restricted to either
green or yellow.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 9: Big Small: Considering count, and size into the logic rules.
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(a) Positive (b) Positive (c) Negative (d) Negative

Figure 10: Big Small: Considering color, and size into the logic rules.

B.3. Similarity: Fixed Number

The category Fixed Number is based on the Gestalt principle of similarity. The base pattern
consists of an equal number of objects in different colors, with up to four color variations.
Additionally, object size and shape can vary to introduce further task variations.

Fig. 11 illustrates a task where the rule involves counting objects of two colors.
Fig. 12 presents a variation where the task requires counting objects among four colors.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 11: Fixed Number: 2 Colors

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 12: Fixed Number: 4 Colors
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B.4. Closure: Feature Square

The category Feature Square follows the Gestalt principle of closure. Its base pattern
consists of four 3/4 circles arranged to outline a square. Fig. 13 illustrates a task where
object colors are limited to red or blue. Fig. 14 presents a variation where all circles
are of equal size. Each task includes a counterfactual pattern that disrupts closure while
maintaining all other rules.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 13: Feature Square: Color

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 14: Feature Square: Size

B.5. Symmetry: Solar Sys

The category Solar Sys follows the Gestalt principle of symmetry. Its base pattern consists
of a large central circle with smaller objects symmetrically positioned around it.

Fig. 15 illustrates a task where small object shapes are limited one variation per image.
Fig. 16 presents a variation where both colors and shapes are restricted to at most two
variations.

B.6. Continuity: Two Splines

The category Two Splines follows the Gestalt principle of continuity. Its base pattern
consists of two intersecting splines formed by small objects.
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(a) Positive (b) Positive (c) Negative (d) Negative

Figure 15: Solar Sys: Shape

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 16: Solar Sys: Color, Shape
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Fig. 17 illustrates a task where all objects share the same shape. Fig. 18 presents a
variation where both the colors and shapes of the objects are identical.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 17: Two Splines: Shape

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 18: Two Splines: Color, Shape

Appendix C. Experimental Details

We followed the setup in the paper (Shindo et al., 2024) to train the NEUMANN baseline.
We used the public YOLOv52 model. We adopted the YOLOv5s model, which has 7.3M
parameters. The model is pre-trained with 15, 000 pattern-free figures for training, 5000
figures for validation. The class labels and positions are generated randomly. The label
consists of the class labels and the bounding box for each object. The class label is generated
by the combination of the shape and the color of the object, e.g., red circle and blue square.
We trained the NEUMANN model for 100 epochs with a batch size of 64. We used the
RMSProp (Ruder, 2016) optimizer with a learning rate of 1e− 2.

2. https://github.com/ultralytics/yolov5
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